Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy

    • Zaloguj
    Zobacz pozycję 
    •   Strona główna Repozytorium
    • PIWet - PIB
    • Publikacje
    • Zobacz pozycję
    •   Strona główna Repozytorium
    • PIWet - PIB
    • Publikacje
    • Zobacz pozycję
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Attributable sources of the five most prevalent non-typhoidal Salmonella serovars across ten European countries

    Journal of Infection

    Thumbnail
    Data
    2025
    Autor
    Teunis, Gijs
    Dallman, Timothy J.
    Zając, Magdalena
    Skarżyńska, Magdalena
    Petrovska, Liljana
    Pista, Angela
    Silveira, Lenor
    Clemente, Lurdes
    Thépault, Amandine
    Bonifait, Laetitia
    Kerouanton, Annaëlle
    Chemaly, Marianne
    Alvarez, Julio
    Söderlund, Robert
    Møller Nielsen, Eva
    Chattaway, Marie
    Burgess, Kaye
    Byrne, William
    van den Beld, Maaike
    Hendrickx, Antoni P.A.
    Franz, Eelco
    Pires, Sara
    Hald, Tine
    Mughini-Gras, Lapo
    Metadane
    Pokaż pełny rekord
    Streszczenie
    Non-typhoidal Salmonella is the second most frequently reported zoonotic pathogen in the European Union and European Economic Area. Most human infections are caused by serovars Enteritidis and Typhimurium. Genomic characterisation of Salmonella isolates from humans and animals has become a routine public health surveillance tool in many countries. In this study, the relative contributions of several potential sources of human infection of the five frequently reported Salmonella serovars was estimated using machine-learning methods based on a large, cross-sectional collection of genomes from human cases, and animal and environmental sources, across ten European countries. To define the population structure, core-genome Multilocus Sequence Typing was performed. A supervised machine-learning approach was applied for source attribution in the form of a Random Forest classifier. The source and country attribution models achieved moderate accuracy (F1= 0.6-0.9), which is lower than in previous studies using machine-learning on Whole Genome Sequencing data. However, attributions of human clinical isolates to different sources were generally in line with previous findings for these five serovars. While the lack of clonality in some sources hindered their prediction, it is also likely that certain sources (e.g., pets) do not serve as major contributors to human infection. Therefore, in most cases attributing these sources to the livestock species they are typically associated with is likely appropriate. Country attributions showed that substantial human cases are attributable to countries other than their own, indicating geographical interrelatedness of sources. This highlights the value of internationally harmonized Salmonella-control policies in the food production chain.
    URI
    https://www.sciencedirect.com/science/article/pii/S0163445325002324?via%3Dihub
    Zbiory
    • Publikacje [682]

    DSpace software copyright © 2002-2016  DuraSpace
    Kontakt z nami | Wyślij uwagi
    Theme by 
    Atmire NV
     

     

    Przeglądaj

    Całe RepozytoriumZbiory i kolekcjeDaty wydaniaAutorzyTytułyTematyTa kolekcjaDaty wydaniaAutorzyTytułyTematy

    Moje konto

    Zaloguj

    Statystyki

    Przejrzyj statystyki użycia

    DSpace software copyright © 2002-2016  DuraSpace
    Kontakt z nami | Wyślij uwagi
    Theme by 
    Atmire NV